
Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 04-029

Probabilistic Stream Relational Algebra: A Data Model for Sensor

Data Streams

Haiyang Liu, San-yih Hwang, and Jaideep Srivastava

July 12, 2004

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
12 JUL 2004 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Probabilistic Stream Relational Algebra: A Data Model for Sensor Data
Streams

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Army High Performance Computing Research Center,Department of
Computer Science and Engineering,University of
Minnesota,Minneapolis,MN,55455

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

21

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Probabilistic Stream Relational Algebra: A Data Model for

Sensor Data Streams
Haiyang Liua, San-Yih Hwangb, and Jaideep Srivastavaa

aDepartment of Computer Science and Engineering , University of Minnesota
bDepartment of Information Management, National Sun Yat-Sen University

Abstract
Sensor data streams exhibit special characteristics such as inherent information uncertainty and inherent data sample
correlations, both within and across streams. We introduce a new data model, called Probabili stic Stream Relational
Algebra (PSRA), that models a sensor data stream as a set of probabili stic data samples, along with prediction strategies
for each attributes, capturing domain knowledge of inherent data correlations. We also explicitly associate every operation
with schedule, specifying when next data sample should be produced, to facilit ate resource management in sensor networks.
We prove that operators in PSRA are non-blocking, thus making PSRA especially suitable for data stream processing. We
also show that conventional relational model and existing deterministic data stream processing model can be modeled in
PSRA.

1. Introduction
Advances in device miniaturization, wireless networking and
embedded processing have reduced both the size and cost
required for sensing, communicating and computing. This
promises a future where a large number of interconnected and
possibly collaborative sensors will be deployed in many
applications such as environmental monitoring, industrial
sensing and diagnostics, battlefield monitoring and patient
monitoring [BGS00]. Large amounts of data, in the form of
streams are produced in such environments. These data
streams, referred as sensor data streams, exhibit several key
characteristics in addition to those outlined in [BBD+02]:

Inherent Uncertainty
Sensor data streams generated from sensor readings are
discrete observations of generall y continuous physical
phenomena. The data samples in a sensor data stream depict
only a partial picture of the phenomena under observation.
Thus, sensor data streams are inherently approximate
representations of physical phenomena. Uncertainty is
therefore inherent when applications try to query the physical
world with only discrete sensor data streams available. In
addition, uncertainties are also introduced during the processes
of data collection (i.e. sensor measurement), data movement
(i.e. communication) and data processing (i.e. computation).
These uncertainty sources are summarized as follows:

Data Collection: Data regarding a phenomenon are
collected through sensor measurements. Measurement
errors are inherent due to the limitations of sensing
principles and sensor operation environments, such as
stabilit y of power sources, sensor locations and sampling
frequencies. Physical measurements usuall y come as a
value distribution range, generall y modeled as a Gaussian
probabilit y distribution function (p.d.f.).
Data Movement: In sensor networks, data are moved

through networks of communication channels. Data delay
and data loss due to limited communication resources
such as channel bandwidth are inherent in today’s
communication networks [CC+03]. Even if a perfect
measurement at a required time point is available at the
source side (i.e. the sensor), data delay and data loss can
introduce uncertainty at the sink side (i.e. end user side)
because the data sample may not arrive on time or never
arrive.
Data Processing: Since sensor data streams are
potentiall y unbounded in size, data processing units with
only limited storages usuall y have to use approximate
methods such as sliding windows or data stream sketching
to process data [BBD+02]. Furthermore, stream data
processing often has real-time requirements, with only a
milit ed time available to process each sample. Thus, the
limitation of computing resources can also introduce
uncertainties in the results.

Inherent Intra- and inter- stream correlations
Data samples in a sensor data stream are usuall y temporal
observations of physical phenomena. Thus, these data samples
have inherent temporal correlations as possessed by the
phenomena. For example, vehicle positions at time t0 and t1
are correlated through the vehicle velocity and the time
difference (t1- t0). Different data streams observing the same
object from different aspects can be correlated as well . For
example, the temperature reading stream and the pressure
reading stream of an air chamber are correlated through the
ideal gas law: PV = nRT, where P denotes pressure, V volume,
T temperature, R a constant and n related to the mass of the air
in the chamber. When the chamber is closed and volume is
fixed, the correlation is simpli fied to P/T = constant.

Energy consumption sensitive

The small size of sensors and highly demanding functions in
sensing, communication and computing make energy a
precious resource in sensor data stream processing systems.
When sensors are networked through wireless channels,
communication is the major energy consumer [EMS02]. Thus,
when and how frequently data samples are transmitted plays a
major role in prolonging the li fetime of a sensor network.

Data importance is context-dependent
In a sensor data stream, data samples have different
importance under different computing context (i.e. everything
that could affect performing an operation). For example, if the
computing context is evaluation of a predicate (Temperature <
30), temperature readings with values around 30 will be more
important than those far below 30 or far above 30 because the
readings around 30 contribute more to the determination of
state change. This example ill ustrates data value-based
importance. Data importance also depends on other attributes
of data streams. For example, if the computing context is to
obtain the most accurate temperature of an object. Assume two
temperature sensors are mounted on the same location of an
object. The temperature readings from the temperature sensor
with higher precision have more importance than those from
the sensor with lower precision. Data importance plays a
central role in load shedding when a data steam processing
system is overloaded.

Eff icient and systematic management of sensor data streams
calls for a data model that takes into account the above special
characteristics. In this paper we develop the Probabili stic
Stream Relational Algebra (PSRA), a data model for sensor
data steams, by extending the conventional relational model.
We first extend the relational model to allow new data types
supporting data uncertainty representations, e.g. example
Gaussian p.d.f. Then domain knowledge of applications,
capturing the intra- or inter- stream correlations is
incorporated into the model. Thus, a sensor data stream is
modeled as a series of data samples and the knowledge
describing their correlations. The correlation model and data
samples with support for uncertainties make up a more
complete view of a phenomena being monitored. This new
data stream model addresses the first two issues outlined
above. In order to address the last two issues, every sensor
data stream operation is associated with a schedule, specifying
when to produce the next data sample. A predicate-based
schedule specification is proposed, supporting specification of
both push (e.g. event-driven) and pull (e.g. periodic query)
type operations. Finall y, we prove that both conventional
relational model and deterministic data stream processing
model are special cases of PSRA. We also ill ustrate the power
of the model in helping resource management in sensor
networks through clear formulation of the resource
optimization problems for the best effort and the QoS-driven
data stream processing modes.

This paper is organized as follows. Section 2 introduces new

concepts such as Predication Strategy to be used in PSRA and
how basic operations (e.g. algebraic operations and predicate
evaluation) are carried out on new data types supporting
uncertainties. Section 3 defines the concept of PS-relation, the
formal model of sensor data streams. The essential relational
operators (i.e. Union, Intersection, Difference, Select,
Projection, Cartesian Product, Join, Aggregation) over the
PS-relation are defined in section 4. Several important
properties of PSRA are discussed in section 5. Related work is
discussed in section 6. We conclude this paper in Section 7.

2. Preliminaries and Basic Definitions
2.1 Representation of data uncertainty
Data uncertainty management generall y falls into two
categories: fuzzy theory-based and probabilit y theory-based.
Since the nature of data management in sensor network
applications is fundamentall y probabili stic [FGB02], we adopt
a probabilit y theory-based approach. In probabilit y theory,
uncertainty is generall y represented using a Probabilit y
Density Function (p.d.f.), which can be either discrete or
continuous [R95].
Continuous P.D.F..
Representative continuous p.d.f.’s include exponential
distribution, Gaussian distribution etc [R95]. Gaussian p.d.f is
of particular interest to sensor network applications because
measurements of physical phenomena are generall y modeled
as Gaussian distributions [W94]. The Central Limit theorem
reveals that a large number of random samples leads to a
Gaussian distribution. A Gaussian pd.f. (also known as Normal
p.d.f.), is characterized by two parameters: � – the mean
values and � – the standard deviation. Formall y,

σπ
σµ

σµ

2
),(

22 2/)(−−

=
xe

N

Discrete P.D.F.
A Discrete p.d.f. is given by specifying the probabilit y of each
value a random variable could assume. Well known discrete
p.d.f.’s include uniform distribution, binomial distribution,
geometric distribution, and Poisson distribution [R95]. The
discrete p.d.f. for a Boolean random variable is a special one
whose domain contains only two values: TRUE and FALSE.

2.2 Essential strategies for sensor data stream processing
srediction strategy
In sensor network applications, data streams are observations
of physical phenomena. Data samples in sensor data streams
arising either directly from sensor measurements (referred to
as original streams) or derived (through operations) from
original streams (referred to as derived streams) have intrinsic
correlations. For example, a stream of temperature readings of
a room must follow heat transfer laws, e.g. the room
temperature change is proportional to the room heat capacity
change, which in turn is determined by the energy the room
received in a certain period of time [M95]. Thus, estimation of
the temperature change in a time unit is bounded by the

maximum energy the room could receive. Furthermore, if the
amount of energy received by the room is known, the next
temperature reading can be predicted (with a certain level of
uncertainty). We refer to the correlation between data samples
within a stream as intra-correlation. In some cases, data
samples in stream A are correlated with data samples in stream
B. For example, the temperature and pressure of a closed
chamber fill ed with air (generall y treated as idea gas) are
governed by the ideal gas law. Thus, at any time point since
the temperature measurement can be predicted through the
pressure measurement at the same time, and vice versa, we
refer to this correlation as inter-correlation. Taking into
account these correlations can significantly reduce number of
data sample required to carry same amount of information.
Thus modeling a sensor data stream as an ordered collection
of data samples with timestamps is oversimpli fied. These
intrinsic data correlations associated with a stream must be
captured to model the stream as an integral entity. In the
PSRA model, these data correlations are modeled as
Prediction Strategies, formall y defined as follows.

Definition 1: A stream history is a sequence of ordered pairs
(ti, Pi) listed in ascending order of ti, where Pi is the data
sample value at time ti.

Definition 2: Prediction Strategy (P-strategy)

A P-strategy is a function �� �� : (history, t) �P that outputs (or
predicts) a value in P given a sequence history history and an
arbitrary timestamp t.

A prediction strategy is an approximation model for an
attribute value in a sensor data stream in case sensor reading is
not available or the sample was lost in communication when
the attribute value at a certain time point is needed. Note that
the range (P) of a P-strategy does not have to be the same as
any domain in the input history (history). The above
pressure-temperature inter-correlation example is a case of
using attributes in other domains, possibly in other streams,
for prediction. We also do NOT constrain the range of t to
allow backward predictions (i.e., t does not have to be larger
than any timestamp in history). Two trivial but important
strategies CONST and IGNORANT are listed in Appendix A.1.
CONST P-strategy models a constant data stream where
attribute values do not change over time. Obviously, only a
single tuple at any time instant is needed to perfectly represent
the whole constant data stream. Attributes in the traditional
relational model can be readil y modeled with this strategy.
IGNORANT P-Strategy models the situation where no data
correlation model is available. Thus if there is a measurement
at time instant t, the prediction for that time instant is exactly
the same measurement. Otherwise, IGNORANT P-Strategy
returns the most recent available measurement value with data
uncertainty being infinite, which renders the result completely
unreliable. Data behaviors in deterministic stream models can
be readily modeled with IGNORANT P-Strategy since there is
no prediction available and estimation of the states of
observables only comes from timely availabilit y of data.

In practice, prediction strategies for sensor data streams can be
constructed from physical model or statistical model of
observations. The ideal gas law in the above example would
yield a physical-law-based prediction strategy for the
temperature stream. For general linear system models, Kalman
Filter [K60] is an excellent tool to build an optimal observer
combining non-perfect knowledge of system model and non
perfect measurements. Kalman filter has been extensively
used in many physical measurement related engineering
applications such as aircraft tracking and navigation [BL98].
For example, in an aircraft tracking application, to determine
the velocity of an aircraft, one could use a Doppler radar, or
the velocity indications of an inertial navigation system, or the
pitot and tatic pressure and relative wind information in the air
data system. A Kalman filter can be built to combine all of this
data and knowledge of the various systems’ dynamics to
generate an overall best estimate of velocity at any time [M79].
A particle position tracking sample problem is given in [K60].
Details are omitted here. When physical models are not
available, statistical models such as those data stream
sketching models can be used to build the prediction strategies.
Examples include randomized sketching [AMS96], V-Optimal
Histograms [JK+98] and wavelet-based approximation
[CG+00]

P-strategies for derived PS-relations can be constructed out of
input ones based on the operations. How P-strategies of sensor
data streams evolve through each PS operator is discussed in
Section 4. When P-strategies constructed this way do not
generate good predictions, new ones can be constructed
through directly building statistical models.

Composition strategies for probabilistic data
The introduction of data uncertainty into the sensor data
stream processing model makes operations much more
complicated as all operations now need to handle p.d.f.’s
instead of deterministic values. This is especiall y true when it
comes to combining multiple data sample into a new one. For
example, observations of the same object at the same time can
be obtained from multiple sources such as redundant sensors.
The final estimation of the state of the object may be specified
as the average of the individual observations. Generall y
operations involving multiple random variables need to have
the joint distribution function of those variables. Constructing
the joint distribution from individual p.d.f.’s needs to consider
the dependency of these random variables. In our framework,
a dependency and requirement model, referred as Composition
Strategy, is introduced to define the way multiple random
variables are “composed” through an operation. This model
allows users to incorporate their domain knowledge (i.e. the
extent to which these variables are dependent) and their
requirements (e.g. conservative or aggressive) to a data stream
processing system.

The dependency and requirement model specifies the

dependencies of multiple random variables and provides the
guidance on how an operation involving multiple random
variables should be carried out. Since Gaussian distribution is
the most commonly used p.d.f. for measurement
representation, we use it to show some example results in the
dependency and requirement model. Table 1 and 2 in
Appendix A.2 show the composition strategies for algebraic
operations and logical operations respectively.

Cleaning Strategy
In a sensor data stream processing system, observations of the
same observable at same time can be obtained from multiple
sources and paths. In order to form a single consistent view of
the observable at a given time, a user-specified strategy is
needed to fusion the multiple observations available (either
consistent or inconsistent) of the same attributes at the same
time point into one estimation for that time point. A cleaning
strategy is introduced for this purpose.

Definition 3: A stream observation is an ordered pair (t, Ps),
where Ps is a set of observed values at time point t.

Definition 4: Cleaning Strategy (CL-strategy)

A CL-strategy is a function C: obs �P that outputs a
value in P by combining values in a stream observation obs.

A cleaning strategy specifies the way to generate a single
estimation of an observable at any time point, eliminating
redundancies and inconsistencies inherent in a probabili stic
sensor data stream processing system. Common cleaning
strategies include:
1. Optimistic -- picking the observation with the least
uncertainty
2. Average – taking the average of all observations
3. Conservative -- picking the observation with the most
uncertainty.

A cleaning strategy can be composed using the basic
operations with appropriate settings on dependency and
requirements as described above. For example, suppose a
stream observation contains three positively correlated values
Ps ={ N(�

1, � 1), N(�
2, � 2), N(�

3, � 3)} , and the average
operation is adopted as the CL-strategy. By taking the
aggressive requirement, the resultant value becomes

)
3

),,min(
,

3
(321321 σσσµµµ ++

N (referred to Table 1 in

Appendix A.2.).

2.3 Schedules
Though the states of many physical phenomena are continuous,
their representations and processing must be carried out on
discrete time points. We introduce the concept of schedule to
specify these time points required by applications, triggered by
special events or limited by sensor capabiliti es.

Definition 5: Schedule

A schedule S is a list of (finite or infinite) monotonicall y
increasing timestamps.

A schedule defines the series of all distinct time points that are
of interest to an application or an operation, in the entire time
history. In many sensor network applications, a schedule
consists of an infinite number of time points. For example,
“starting from 12:00:00 05/15/04 with a sampling frequency of
10 minutes” specifies a periodic schedule commonly used in
monitoring applications.

To construct a practical sensor network application, a finite
representation of a schedule is needed. Observe that, though a
schedule can have an infinite number of members, only a
finite number of them are needed at any time. In most cases,
only the next time point in a schedule is needed for a sensor or
processing node to operate. To support both push-type and
pull -type applications, the schedule specification must be able
to support “event-driven” specification and application
requirement-driven such as periodic monitoring requirements.
We propose a predicate-based schedule specification for this
purpose, which is shown in Appendix A.3.

3. Probabilistic Stream Relation

(PS-relation)
3.1 Probabilistic Stream Tuple
Borrowing the concepts from OLAP [CD97], we distinguish
data in sensor network applications into two categories,
dimension data and measurement data. Dimension data
specifies a category of information for identifying objects
rather than measuring readings. Dimension data are commonly
used to identify data sources and take deterministic forms (i.e.
represented in traditional data types instead of p.d.f.’s). Sensor
id’s, sensor types, and sensor locations are among the
examples of dimension data. Measurement data specifies the
attributes of the object identified by the associated dimension
data. Temperature readings are examples of measurement data
in a data stream generated by a temperature sensor. As
discussed in previous sections, measurement data have
inherent uncertainties and thus are represented generall y by
P.D.F.s. Furthermore, domain knowledge and application
requirements are introduced in form of prediction strategy to
capture the temporal correlations of measurement data. Thus
there is a need to extend the traditional definition of data type
defining an attribute. We introduce the concept of stream
domain to capture the extra characteristics.

Definition 6: Probabilistic Stream Domain (PSD)

A probabilit y stream domain (PSD) is an ordered pair (pdd,
p-strategy), where pdd is referred to as Probabili stic Data
Domain (PDD) whose values may be p.d.f.’s in addition to
deterministic data types, and p-strategy is a prediction strategy
that generate values in the domain of pdd.

The pdd in a PSD specifies both the data type (e.g., Gaussian
p.d.f.) and the data range (e.g. from 0 to 1000), which can be
used to specify the limitation of a sensor. The p-strategy in a

PSD captures the stream characteristic. Note that p-strategy is
extra information for facilit ating modeling of a data stream,
rather than a mandatory requirement on the data. In fact the
p-strategy will be dynamicall y updated as additional
observations in a data stream come in.

Definition 7: Dimensional Domain (DD)

A DD domain is a special case of a PSD domain, where pdd
has a deterministic data type and p-strategy is CONST

A DD domain provides an approach to modeling conventional
data domain in our probabili stic data stream framework. An
attribute in a DD domain is always deterministic and the
CONST prediction strategy guarantees that its value does not
change over time. Traditional non-stream relational data are
readily modeled using DD domain. Note that traditional
deterministic data type can be modeled as special cases of
probabili stic data type for the purpose of computation. For
example, deterministic value 100 is equivalently represented
by a Gaussian p.d.f. N(100, 0), i.e. a Gaussian distribution
function with mean value at 100 and standard deviation being
0. This special function is also referred to as Delta function
[R95].
Definition 8: A dimension attribute is an ordered pair (dim,
dd), where dim and dd are the name and the domain of the
attribute respectively and dd must be a DD.
Definition 9: A measurement attribute is an ordered pair (mea,
psd), where mea and psd are the name and the probabilit y
stream domain of the attribute respectively and psd is a PSD.

Definition 10: Probabilistic Stream Schema (PS-schema)

A PS-schema is comprised of a non-empty li st of
dimension attributes and a list of measurement attributes.

A PS-schema is an ordered list of attribute name and domain
pairs, analogous to a conventional relational schema.
Attributes in a PS-schema are divided into two types, namely
dimension attributes and measurement attributes. The values
in dimension attributes are assumed to change only at some
discrete time points and these changes are completely
reflected on the tuples pertaining to the PS-schema. In contrast,
values in measurement attributes may continuously change
over time, in addition to their probabili stic nature. An
associated prediction strategy gives hints on how measurement
attribute values advance over time. The definition of
PS-schema also requires that any valid PS-schema must have
at least one dimension attribute, providing room for
identifying streams.

Note that since a P-strategy is a model facilit ating data sample
predictions in a stream rather than a constraint on data in the
stream, two PSDs are considered compatible if they have the
same probabili stic data domain. Thus, two schemas are
considered “compatible” as long as all of their corresponding
attributes have compatible domains. When defining operations
in this paper, we also use “same schema” to refer to
compatible schema. The P-strategy changes are explicitl y

addressed.

Definition 11: Probabilistic Stream Tuple (PS-tuple)

A PS-tuple of a PS-schema Sch contains a list of valid
dimension attribute values, a list of valid measurement
attribute values as determined by Sch or NULL, and a valid
timestamp on universal clock.

A PS-tuple with NULL on all measurement attributes is also
called NULL PS-tuple. The reason for inventing NULL
PS-tuple will become clear when we introduce algebraic
operations in the next section. In this paper NULL means
empty or not applicable instead of unknown.

3.2 Probabilistic Stream Relation (PS-relation)
Definition 12: An object PS-tuple set O over a PS-chema Sch
under a schedule S is a set of PS-tuples of Sch such that
1. all PS-tuples in O share the same values on all

dimension attributes
2. the timestamp of each PS-tuple in O must be in S
3. each timestamp in S has exactly one PS-tuple in O.

An object PS-tuple set records the measures of an object
(identified by the same dimension attribute values) at various
time points as specified by a schedule.

Definition 13: PS-relation

A PS-relation R over PS-schema Sch under a schedule S is the
union of several object PS-tuple sets over Sch under S.

A PS-relation is a collection (possibly infinite number) of
object PS-tuple sets compatible with the same schema. A
PS-relation can have multiple object PS-tuple sets, each
representing a series of observations of an observable
identified by a distinct set of dimension attribute values. Each
object PS-tuple set can be viewed as a sub-stream in the main
stream represented by a PS-relation. All object PS-tuple sets in
a PS-relation share the same PS-relation schedule and the
same P-strategy for each attribute. All sub-streams in the same
stream thus have strong logical ties, i.e. same schema, same
schedule and same stream characteristics. The definition of the
PS-relation also guarantees that a PS-relation is a clean view
of observables because no redundant tuples are allowed and no
unresolved observations of the same observable at the same
time are allowed. PS-relations can be generated either directly
from sensors (direct PS-relation) or derived through operations
(derived PS-relation). We do not distinguish between these
two types in our proposed framework as they pose no
differences as far as the algebra (i.e., representation and
processing) is concerned. An example PS-relation is shown in
Appendix A.4.

3.3 Semantics of PS relation
A PS-relation represents all available information on the
history of a number of observables. Each PS-tuple in the
PS-relation represents a base fact observation of the
observable at a particular time point With the predication

strategies available, observation at any time can be computed
in a PS-relation. Thus the predication strategies in a
PS-relation allows a possibly lossy representation of a
continuous phenomenon with discrete finite number of tuples.

Equivalence of two PS-relations is no longer as simple as set
membership testing in PSRA. Rather it is defined as
information equivalence. For example, if R1 can be resampled
to have same estimation qualit y (i.e. same uncertainty) at all
time points as R2 have, R1 is information equivalent to R2. If
estimation qualit y by R1 is same as R2 only on time points
specified in a schedule S, R1 is information equivalent to R2
under S. Generall y, less base fact observations are needed
when a better prediction strategy is available to contain same
amount of information. The concept of information
equivalence can facilit ate resource management in sensor
networks. c. For example, given QoS requirement for a data
stream, finding its PS-relation representation with minimum
number of PS-tuples can reduce storage needed for the data
stream and energy required to transmit data samples from one
node to another

4. PS Operations
4.1 Helper operations
Cleaning
As mentioned in Section 2.2, cleaning functions, in the form
of CL-strategies, are practicall y needed to remove data
redundancies and to resolve observation inconsistencies,
serving the purpose of constructing out of raw data a valid
PS-relation.

Definition 14: Cleaning

Let T be a set of PS-tuples of the same PS-schema with a set C
of CL-strategies, one for each measurement attribute. The
cleaning of T using C , denoted �

C(T), is defined as follows:

))},,(,(

dim,.,.,:),,{ ()(

TdtMeasureCCleanm

rdttimerTrtmdTC

=
==∈∃=κ

where r.time and r.dim return the time and dimension attribute
values of a PS-tuple r respectively, Measure(t, d, T) retrieves
all measure attribute values of PS-tuples in T that have the
same timestamp t and dimension attribute d, and Clean(C, M)
applies the CL-strategies in C on the measure attribute values
in M.

Cleaning of a PS tuple set creates a valid PS-relation with
consistent observations and no data redundancy. The Cleaning
operation first divides the PS tuple set T into subgroups by
their dimension attributes values. For each subgroup (i.e. all
tuples with same dimension attributes values), find all tuples
with the same timestamp and apply the CL-strategy. Thus,
after Cleaning operation, it is guaranteed that there is one and
only one observation (PS tuple) for each distinct time point for
each object tuple set. The set property of no duplicate tuples is
automaticall y guaranteed by this operation. Example is
omitted since this operation is straightforward.

Resampling
In sensor network applications, data points generated by
sources may not match the data consumers’ requirements, and
thus resampling of the original streams is usuall y required.
Semanticall y, resampling of a PS-relation generates a new
view (specified by a new schedule) of observables from their
current view.

Definition 15: Resampling

Let the PS-schema of a PS-relation R be ((dim1, dd1)… (dimm,
ddm), (mea1, pdd1)… (mean, pddn)) and the P-strategy
associated with i’ th measurement attribute be Pi. The
resampling of a R under a schedule S, denoted as � S(R), is a
PS-relation as defined below:

)},(....),(.

),(.),...,(dim.

:),,...,,,...,{()(

222

1111

11

thistoryPmrthistoryPmr

thistoryPmrddr

RrSttmmddR

nnn

m

nmS

=∧∧=
∧=∧=

∧∈∃∧∈=ρ

where Pi denotes the prediction strategy for the i’ th
measurement attribute .
historyi represents the history information passed in for
prediction of attribute ζi. historyi may come from within R or
from other PS-relations.

Resampling of a PS-relation creates a new PS-relation with
different tuple set, and thus a different view of the observables.
The Resampling operation first divides the PS-tuple set R into
subgroups by their dimension attributes values. Next, apply
the P-strategy on values of each attribute in each subgroup (i.e.
all tuples with the same dimension attributes values), to
generate new values of the attribute for the subgroup at new
time points as required in the schedule S. An ill ustrative
resampling example is shown in Example 2 in Appendix A.4.

4.2 Stream Union
Union of two streams serves the purpose of merging two
PS-relations with the same schema and producing a new
PS-relation without duplicates. In applications, Union is used
to merge observations about the same set of objects from
different angles/paths to form a more complete view of the
same set of objects. The resulting stream can have different
observation time points from the input streams.

Definition 16: Set Union

The set union, denoted U , of two (compatible) PS-relations
R1 and R2 is defined as

}|{ 2121 RaRaaRR ∈∨∈=U
The set union is very much li ke a conventional set union of the
base tuple sets of R1 and R2. Note that the schemas of R1 and
R2, though compatible, may have different P-strategies on
corresponding attributes. The P-strategies in the resultant
schema of the set union are left unspecified. Set union serves
the purpose of defining the more general stream union.

Definition 17: Stream Union

The stream union of two PS-relations R1 and R2 using
CL-strategy CCCC under schedule S, denoted as 2),C(1 RR SU , is

defined as follows:
1. The base tuple set in the result PS relation is given

by

))()((21
c2),C(1

pp
S RRRR

SS
ρρκ ∪=U ,where,

))(R)(R(21c
1

)21()21(SSSS

pR
∪∪

∪= ρρκ with

P-strategies same as those in R1

))(R)(R(21c
2

)21()21(SSSS

pR
∪∪

∪= ρρκ with

P-strategies same as those in R2

 S1 U S2 denotes a schedule with all time points
specified in S1, the original schedule of R1, and S2, the
original schedule of R2
2. The P-strategy �� �� for any measurement attribute a in

the resultant PS-relation is specified by the
following: �� �� (history,t)

return C(�� ��
1(history,t), �� ��

2(history,t))
where �� �� 1 denotes the P-strategy for attribute a as specified in R1 �� �� 2 denotes the P-strategy for attribute a as specified in R2

The stream union merges information in two PS-relations
together. This operation is more complex than simple set union
of all the tuples in the two PS-relations due to certain
information, such as data correlation knowledge, is carried in
the p-strategy. Thus, a complete stream union takes three steps.
First all tuples from R1 and R2 are pooled together to form a
larger base set, denoted as r. Then the p-strategy in R1, denoted
as p1, and the p-strategy in R2, denoted as p2, are applied on
the merged base set to estimate the observations at time points
in the specified schedule. This step is done through the
resampling operation in the above formula. After this step, two
sets of observations at the same specified schedule points are
generated. Finall y, a cleaning operation is employed to
combine the multiple estimations at each time point to
generate a single consistent estimation on the schedule, which
forms the data set of the result stream. The new p-strategy is
also dynamicall y selected by the CL strategy.

The following subsections present the algebraic operations of
PSRA, with examples shown in Appendix A.5.

4.3 Stream Intersection
The purpose of stream intersection of two PS-relations is to
generate a stream with information that is verified by both
streams. In practice, intersection can be used to find
observations that have been verified from multiple sources and
paths, i.e. the observations of the same object at the same time
point from multiple sources/paths are consistent with each
other. The consistency of multiple observations of a single

attribute is determined by the similarity of the multiple
observation p.d.f.’s.

Definition 18: Set Intersection
The set intersection, denoted ∩, of two PS-relations R1 and R2,
is defined as

))}.,.(...).,.(

)dim.dim.(...)dim.dim.(

)..()(()(|{

11

11

2121

nn

mm

meabmeaaEqualmeabmeaaEqual

baba

tbtaRbRaaRR

∧∧
∧=∧∧=

∧=∧∈∃∧∈=∩

The set intersection matches up the tuples in R1 and R2 at the
same time points. It is similar to conventional set intersection
except for the equivalence of measurement attribute values (as
defined by Equal()). Equal(m1, m2) is a system-defined
predicate that determines whether the two p.d.f.’s.s m1 and m2
are equal. For discrete p.d.f.’s , an example difference function
is cross-entropy, or called KL-distance [KL51]. Specificall y,
the cross entropy of m1 to m2 is defined as

D(m1, m2)= ∑
∈

⋅
PDDx

xm

xm
xm

)(

)(
lg)(

2

1
1 ,

where PDD is the data type of the probabilit y data domain of
m1 and m2. Thus, the equivalence predicate Equal(m1, m2) can
be given by:

ε≤≡),(),,(max(),(122121 mmDmmDmmEqual ,
where ε is a system-defined threshold.

For continous p.d.f’s such as Gaussian p.d.f’s, the equalit y
measure is replaced by a similarity function as proposed in
[FGB02].

Definition 19: Stream Intersection
The stream intersection of two PS-relations R1 and R2 under
schedule S, denoted 2)(1 RR S∩ , is defined as
1. The base tuple set in the resultant PS-relation is specified

by the following:
Let

dim)}.(dim).dim.()()(:{ 21 adbaRbRadO =∧=∧∈∃∧∈∃=
 and

)()(21 RRR SS ρρ ∩= . Here O denotes the set of objects
appeared in both relations and R the set of observations on
these objects agreed in both R1 and R2.

)))}()dim.().((

)).()dim.().(((

)()(:),,{ (2)(1

NULLmdrttrRr

mmeardrttrRr

OdSttmdRR S

=∧=∧=∧∈¬∃
∨=∧=∧=∧∈∃

∧∈∧∈=∩

2. The P-strategy�� �� for any measurement attribute a in the
resultant PS-relation are specified by the following: �� �� (history,t)

if �� ��
1(history,t) = �� ��

2(history,t)
 then return �� ��

1(history,t)
 else return NULL

where �� �� 1 denotes the P-strategy for attribute a in R1,
 �� �� 2 denotes the P-strategy for attribute a in R2, and

The stream intersection operation finds the information that is
agreed to by multiple PS-relations. A stream intersection takes
three steps. First, all tuples from R1 are resampled to obtain
estimations for the operator schedule S. Then all tuples from
R2 are resampled to obtain estimations for the operator
schedule S. Now, at each schedule point we have two
estimations, from R1 and R2 respectively. If these two
estimations agree (based on p.d.f. equivalence when the
attribute is probabili stic), the agreed estimation serves as the
tuple at that time point in the result PS-relation. If not, a
NULL tuple is created for that time point, meaning no
estimation is available or the uncertainty is infinite. The
p-strategy for the result PS-relation is constructed as a
composition of the p-strategies in the input PS-relations
following the logic described above.

4.4 Stream Difference
The difference of two PS-relations is used to eliminate certain
observations as described in one relation from the other. In
practice, this operation can be used to remove from a stream
certain observations that are later deemed inappropriate. For
example, readings in certain range from one sensor might need
to be removed because it is found that the sensor was wrongly
configured for that range. As another example, civili an users
are allowed to use GPS with precision less than what is
required by the milit ary. Thus, certain tuples in the GPS data
stream will need to be removed before being fed to civili an
applications.

Definition 20: Set Difference

The tuple set difference, denoted “−“ , of two PS-relations R1
and R2, is defined as

))}.,.(dim).dim.(

)..()(()(|{ 2121

meabmeaaEqualba

tbtaRbRaaRR

∧=
∧=∧∈¬∃∧∈=−

The set difference matches up the tuples in R1 and R2 at the
same time points. If all attribute values of a tuple in R1 agree
with those of some timestamp-matching tuple in R2, the tuple
in R1 is removed.

Definition 21: Stream Difference

The stream difference of two PS-relations R1 and R2 under
schedule S, denoted 2)(1 RR S− , is defined as
1. The base tuple set in the result PS-relation are specified

by the following.
 Let dim)}.()(:{ 1 adRadO =∧∈∃= and

)()(21 RRR SS ρρ −= . Here O denotes the set of objects
appeared in R1 and R the set of observations in R1
diagreed by R2.

))}dim..(

).dim..((

)()(:),,{ (2)(1

NULLmdrttrRr

mmeardrttrRr

OdSttmdRR S

=∧=∧=∧∈¬∃
∨=∧=∧=∧∈∃

∧∈∧∈=−

2. The P-strategy �� �� for any attribute a in the resultant
PS-relation are specified by the following: �� �� (history,t)

if �� ��
1(history,t) = �� ��

2(history,t)
 then return NULL

 else return �� ��
1(history,t)

where �� �� 1 denotes the P-strategy for attribute a in R1,
 �� �� 2 denotes the P-strategy for attribute a in R2, and

The stream difference operation removes information that is
available in R2 from R1. A stream difference takes three steps.
First, all tuples from R1 are resampled to obtain estimations
for the operator schedule S. Next, all tuples from R2 are
resampled to obtain estimations for the operator schedule S.
Now, at each schedule point we have two estimations, from R1
and R2 respectively. If these two estimations agree (based on
the p.d.f. equivalence when the attribute is probabili stic), the
agreed estimation is removed by putting up a NULL tuple
(meaning Not Applicable) for that time point in the result
PS-relation. If not, the estimation tuple from R1 is preserved as
the tuple for that time point in the result PS-relation. The
p-strategy in the result PS-relation is constructed as a
composition of the P-strategies in the input PS-relations
following the logic described above.

4.5 Stream Select

Definition 22: Stream Select

The stream select of a PS-relations R over predicate pr under
schedule S, denoted as RSpr),(σ , is defined as follows.

1. The base tuple set in the resultant PS-relation are
specified by the following.
Let dim)}.()(:{ 1 adRadO =∧∈∃= . Here O

denotes the set of objects appeared in R.

)))}()(()).()((((

)()(:),,{ (),(

NULLmrprmearmrprRr

OdSttmdRSpr

=∧¬∨=∧∧∈∃

∧∈∧∈=σ

2. The P-strategy �� �� for any measurement attribute a in
the resultant PS-relation is specified as follows: �� �� (history,t)
if pr(�� �� x1

 (history,t), …, �� ��
xk(history,t)) = TRUE

 then return �� ��
a(history,t)

 else return NA
where
 xi, 1

�
i

�
k, denote the attributes involved in evaluation of pr,

 �� �� xi denotes the P-strategy for attribute xi in R, and
 �� �� a denote the P-strategy for attribute a in R.

Note that if some measurement attributes are included in the
predicate pr, the computation of pr has to be probabili stic,
following the basic operations described in Section 2.2. In
addition, the result of the evaluation of pr is also probabili stic.
For example, the evaluation of (N(µ=30,σ=2)<32) results in a
Boolean distribution. To deal with this problem, we assume a
user-defined threshold associated with each selection
operation which determines the minimum TRUE probabilit y
to satisfy the condition. For example, a 70% threshold will

make the evaluation of (N(µ=30,σ=2)<32) TRUE, while a
90% threshold will result in FALSE for the evaluation of
(N(µ=30,σ=2)<32).

The stream select operation picks information that satisfies a
specified condition. The stream select is carried out in two
steps. First the original PS-relation R is resampled to obtain
estimations for the operator schedule S. Then at each schedule
point the predicate is evaluated against the estimation at that
time point. If the predicate evaluates to TRUE, the estimation
is passed to the output PS-relation. Otherwise, a NULL tuple
for that time point is passed to the output PS-relation. The
same logic is used to construct the output P-strategies out of
the original P-strategies in the input PS-relation.

4.6 Stream Projection
The purpose of projection of a PS-relation is to produce a new
PS-relation with only part of the attributes in a PS-schema
from the original PS-relation, and to remove duplicate tuples.
Note that the observation timestamp is not part of a
PS-schema, and thus it can not be crossed out. Also, the
elimination of certain dimension attributes may result in
duplicated estimations at the same time point. Thus a cleaning
operation is needed to make the final result a valid PS-relation.

Definition 23: Stream Projection

The stream projection of a PS-relations R over a subset of the

attributes specified in R’s schema: Aproj = (A1, …Ak), using

CL-strategy C and under schedule S, denoted)(),,(R
projASCπ ,

is defined as follows:

1. The base tuple set of)(),,(R

projASCLπ is given by
)))((()(C),,(RR SAASCL projproj

ρπκπ = ,

where
projAπ is the conventional project operation

without duplication elimination.
2. The schema of)(),,(R

projASCLπ is simply the

collection of attributes Aproj, the P-strategy of each

measurement attribute remains the same.

The stream projection is very similar to the conventional
projection operation (i.e. only the columns of the attributes to
be projected are preserved) except a resample operation is
done first to match the output schedule requirement and a
cleaning operation is done to remove duplicate observations.
The p-strategy for each projected attribute is also preserved.

4.7 Stream Cartesian Product
Cartesian product is used to merge two PS-relations with
possibly different schemas. The schema of the resulting
PS-relation is a concatenation of the schemas of the two input
PS-relations. In sensor network applications this operation can
be used to merge different types of data streams. For example,
the temperature readings stream and pressure readings stream

of the same gas chamber can be merged together to form a
complete view of the same object.

Definition 24: Stream Cartesian Product

The stream Cartesian product of two PS-relations R1 and R2
under schedule S, denoted as 21 RR S× , is defined as
following:

1. The base tuple set of the resultant PS-relation is given
by

))},(().().()(

))(())((|),{ (

2121

221121

pppttpttpSt

RpRptpRR SSS

=∧=∧=∧∈
∧∈∧∈=× ρρ

2. The schema of 21 RR S× contains the attributes
coming from both R1 and R2.

The stream Cartesian product takes two steps. First, the input
PS-relations–R1 and R2, are resampled over the schedule S.
Next, tuples with the same timestamps are paired up and
attributes from R2 are concatenated to the attributes from R1.
Because of the resampling step over the same schedule, each
tuple in R2 is guaranteed to pair up with one and only one
tuple in R1 with the same timestamp. A tuple in the Cartesian
product of two PS-relations represents a simultaneous
observation of all attributes in the original input streams at a
time point.

4.8 Stream Join
The stream join operation is defined as a composition of
Cartesian product and select, similar to the join operation in
conventional relational model. We take the theta join as the
example. Equal join and natural join are its special cases.

Definition 25: Stream Join

The stream join of PS-relations R1 and R2 with predicate pr
under schedule S, denoted as R1 �� �� (pr,S)R2, is defined as
R1 �� �� (pr,S)R2)(2)(1),(RR SSpr ×= σ

Example for stream join is omitted as it is a straightforward
composition of Cartesian product and select

4.9 Stream Aggregation
The PS-relational model can also be extended to support
stream aggregations. A stream aggregation, li ke an aggregation
in conventional relational model, needs a GROUP BY
condition.

Definition 26: Stream Aggregation

The stream aggregation of a PS-relations R with a set of
grouping attributes G (specified as a set of attributes) and a set
of aggregation functions F (one for each attribute to be
aggregated) under the history constraint hc (a predicate
specifying whether a tuple should participate in the
aggregation) and a output schedule S, denoted as RSGhcF),,,(ℑ ,
is defined as follows.
1. The PS-schema of RSGhcF),,,(ℑ has two types of

attributes: attributes contained in the group condition G
(all attributes in this category become dimension
attributes in the new schema) and attributes resulted from

aggregation functions F (all attributes in this category
keep their type in the new schema, i.e. dimension
attributes are still dimensional and measurement attributes
are still measurements).

2. The base tuple set of RSGF),,(ℑ has one tuple for each
time point t in S.

)},',().(

)'()(:),,{ (),,,(

gRtFfggr

RrSttfgRSGhcF

=∧=

∧∈∃∧∈=ℑ
,

where)}()(|{' rhcRrrR
S

∧∈= ρ denotes the
PS-relation resampled from R under schedule S and satisfy
history constraint hc and F(t, R’ , g) denotes the application of
the aggregate functions in F to the tuples in R with grouping
attribute value being g and timestamp

�
 t.

Example 9 shown in Appendix 5 also demonstrates how
sliding time window is implemented as a history constraint in
PSRA. Since PSRA supports arbitrary predicates as history
constraints, arbitrary window type can be supported. Note that
this history constraint can also be embedded into P-strategies
to screen out unwanted tuples since P-strategies can be
dynamicall y changed by users. Thus other operations without
explicit history constraint can also operate on a window of
stream history instead of the default whole history. History
constraint is explicitl y specified in stream aggregation only for
the purpose of convenience without adding extra modeling
power.

5. Properties of PSRA

In this section we show the modeling power of PSRA through
the following three theorems.

Theorem 1: Operators in PSRA are non- blocking
Proof: All operations (except Cleaning) in PSRA are applied
on PS-relations and have an associated operation schedule.
Because every attribute in a PS-relation has a prediction
strategy, for any time instant t, a PS tuple with that timestamp
can be estimated from existing base tuples and corresponding
prediction strategies, regardless of whether any PS tuple in the
base tuple has timestamp t. Cleaning operation, as a helper
function, is only applied on pre-resampled data as defined in
Stream Union and Stream Projection. Thus regardless of the
operation schedule requirement, a result PS tuple can always
be computed for any time instant in the schedule without
waiting for any information. New information (PS tuples)
injecting into input PS-relations only improve the qualit y of
the results (e.g. less standard variations for Gaussian p.d.f.’s)
at future observation time instants. Thus all operators in PSRA
are non-blocking.

Theorem 2: Existing Deterministic data steam models can be
modeled in PSRA
Proof: Arasu et al [ABW03] has proved that the CQL data
steam model is less expressive than Aurora, similar to the
TelegraphCQ model and more expressive than other existing

deterministic data stream models as discussed in Related Work.
Thus we only need to show that CQL and Aurora models can
be modeled in PSRA. Using Lemma 2 and Lemma 3 proved in
Appendix A.6, we conclude that this theorem holds.

6. Related Work

Lack of directly comparable probabili stic data stream models,
research works in deterministic data stream models and data
uncertainty models are generall y related to this paper.

Data stream models
Studies on data stream models, in a generalized sense, can be
traced back to materialized view maintenance [H87, SR88,
GM95, JMS95], where updates to views are continuously
computed based on updates to base tables on which the views
were defined. Next, this problem was studied in the context of
active databases, where rules are continuously evaluated
driven by database activities [PD99]. Explicit data stream
models were first introduced in [TG+92] and recently have
been studied extensively [S96, CD+00, ABW, AC+03, CC+03,
CJ+03]. The details of these models are discussed below:

The Chronicle Data Model (CDM) introduced in [JMS95]
separated the concept of relation from that of stream
(Chronicle, in their original term). The CDM supports the
common relational operators and aggregations with
incremental maintenance of materialized views. The data
model in Tapestry system [TG+92] is essentiall y relational
models supporting time-oriented queries. In Tapestry all data
including stream data are stored in database and queried
periodically and results are merged together to form the result
stream. NiagaraCQ [CD+00] introduced intelli gent grouping
to optimize continuous queries over large amount of XML
documents. Data model wise, it is similar to Tapestry.
Gigascope [CJ+03] takes a stream-only approach. Selection,
join, aggregation and merge (similar to union) operations are
supported over streams. Tribeca [S96] is another pure stream
model supporting window specification and a subset of
relational operators and aggregations in form of demux and
mux. TelegraphCQ [CC+03] proposed a window-based
stream-to-stream data model, where, for every instant in time,
relational operators are applied to windows of input data
streams, resulting in a set of tuples associated with that instant
in time. Aurora [AC+03] proposed a procedural framework for
data stream processing. Its data model is also stream-to-stream,
with the following seven operators: Filter, Map, Union, Bsort,
Aggregate, Join, Resample.

CQL [ABW03] takes a similar approach to CDM in that it also
separates the concept of relation from that of stream to take
advantage of existing optimization techniques for traditional
relational algebra. Streams can be converted to relations using
windows. Relations can be converted to streams by generating
new elements along time using Isteam, Dstream or Rstream

operators. Operations in CQL are carried out in three steps. All
streams are first converted to relations. Then traditional
relational operators are applied on these relations. Finall y all
result relations are converted back to result streams.

All existing data models discussed above treat a data stream as
a bag of ordered tuples, either explicitl y or implicitl y, without
consideration of inherent correlations within a stream and
across streams. In addition, all of these models are
deterministic in the following senses:

1. All data types are deterministic.
2. There is no formal model of data uncertainty

incorporation and propagation.
3. There is no built -in probabili stic query support.

Data uncertainty models
Management of data uncertainty in database systems can be
divided into probabili stic models [BG+92] and fuzzy models
[AR84, KF88]. However fuzzy logic is more concerned with
compensating for the lack of expressivity in a language instead
of directly with data uncertainty [FGB02]. Thus probabili stic
model is more suitable of modeling uncertainties in data from
physical world [FGB02].

Research in probabili stic data model can be traced back to the
study of data incompleteness in databases [W82, IL84].
Probabili stic data model supporting discrete p.d.f.’s have been
extensively investigated [CP87, BG+92, DS96]. Faradjian et
al [FGB02] recently proposed a Gaussian distribution abstract
data type supporting continuous p.d.f. Faradjian generalized
the equalit y of two Gaussian p.d.f’s using similarity
measurement and measure the difference of two Gaussian
p.d.f’s with total variation distance [FGB02]. However
mutual independency are implicitl y assumed in all operations
in [FGB02] as no dependency model was discussed and
employed in [FGB02]. Lakshmanan et al first introduced
dependency models for computing probabilit y of composite
events [LL+97]. However their model only supports Boolean
data type and is not first-order.

The probabili stic relational algebra for temporal databases
proposed by Dekhtyar et al. [DRS01] has been particularly
inspiring to our work. Their algebra supports modeling and
reasoning of uncertainty about the start time, end time and
duration of events while keeping all measurement values
deterministic. In sensor data applications, we often need to
model and reason about the uncertainty inherent in
measurements at precise time instants as discussed in section
1.

7. Conclusions
Sensor data streams exhibit special characteristics such as
inherent information uncertainty, inherent data sample
correlations within and across streams, sensiti ve energy
consumption and context-dependent data importance. We
introduce the Probabili stic Stream Relational Algebra (PSRA),

a data model for sensor data steams, by extending
conventional relational model to address these characteristics.
Specificall y, a sensor data stream is modeled with a
PS-relation consisting of a series of probabili stic data samples,
capturing the inherent data uncertainties, and an associated
prediction strategy capturing the inherent data sample
correlations. Dependency models are introduced, in form of
composition strategies, to support complex probabili stic
operations. A predicate-based schedule specification is
proposed, supporting specification of both push (e.g.
event-driven) and pull (e.g. periodic query) type operations, to
explicitl y specify when to produce the next data tuple for an
operation. With this model, memory required to store
information of a data stream (i.e. memory required to store the
base tuples for the stream) can be reduced when a high qualit y
data correlation model is available. Data stream qualit y now
can be intuitively defined by data uncertainties in desired
schedule. Application QoS requirements can be expressed as
data uncertainty requirements in its desired schedule. This
requirement can then be transformed backward to guide the
scheduling of underlying operations and even the sensors
themselves. This schedule requirement propagation is a
dynamic process, depending on the computing context. Thus
PSRA provides a context-ware mechanism facilit ating energy
management in sensor networks through operator scheduling
feedbacks. We also prove that operators in PSRA are
non-blocking, thus making PSRA especiall y suitable for data
stream processing. Finall y we demonstrate the modeling
power of PSRA by showing that conventional relational model
and existing deterministic data stream processing models can
be modeled in PSRA.

This paper represents our initial effort in building a
probabili stic sensor data stream processing system. Future
work includes study of equivalences in PSRA for execution
optimizations and construction of a prototype system.

8. Acknowledgements
This work has been partiall y supported by the NSF under
grant ISS-0308264, the ARDA agency under contract
F30602-03-C-0243 and the Army High Performance
Computing Research Center under contract
DAAD19-01-2-0014. The content of this work does not
necessaril y reflect the position or policy of the government
and no off icial endorsement should be inferred. Access to
computing faciliti es was provided by the AHPCRC and the
Minnesota Supercomputing Institute.

References
[ABW03] A. Arasu, S. Babu and J. Widom, “CQL: A

Language for Continuous Queries over Streams
and Relations,” DBPL 2003: 1-19

[AC+03] D. Abadi, D. Carney et al., “Aurora: a new model
and architecture for data stream management,”
VLDB Journal 2003

[AMS96] N. Alon, Y.Matias and M. Szegedy, “The space
complexity of approximating the frequency
moments,” Proc. Of the 1996 Annual ACM Symp.
On Theory of Computing, Pg20-29, 1996

[AR84] M. Anvari and G. Rose, “Fuzzy relational
databases,” Proc. Of the 1st International Conf on
Fuzzy Information Processing, Pg B-6-3, CRC
Press, 1984

[BBD+02] B. Babcok, S. Babu etc., “Models and Issues in
Data Stream Systems,” PODS 2002, 1-16

[BG+92] D. Barbara, H. Garcia-Molina et al, “The
Management of probabili stic data,” TKDE,
4(5):487-502, 1992

[BGS00] P. Bonnet, J. Gehrke and P. Seshadri, “Querying the
Physical World,” IEEE Personal Communications,
Vol 7 No 5, Oct. 2000, Pg10-15. Special Issue on
Smart Spaces and Environments

[BL98] Y. Bar-Shalom and X. Li, “Estimation and
Tracking: Principles, Techniques and Software,”
YBS Publishing, 1998

[CC+02] D. Carney, U.Centintemel, et al. “Monitoring
Streams – a new class of data management
applications,” Proc. Of the 28th Intl. Conf. On Very
Large Data Bases, pg 215-226, Aug. 2002.

[CC+03] S. Chandrasekharan, O. Cooper, et al.
“TelegraphCQ: Continuous dataflow processing for
an uncertain world,” Proc. Of the 1st Conf. On
Innovative Data Systems Research, pg 269-280,
Jan 2003.

[CD97] Surajit Chaudhuri, Umeshwar Dayal: An Overview
of Data Warehousing and OLAP Technology.
SIGMOD Record 26(1): 65-74 (1997)

[CD+00] J. Chen, D. DeWitt et al, “NiagaraCQ: A scalable
continous query system for internet databases,”
Proc. Of the 2000 ACM SIGMOD Intl. Conf. On
Management of Data, pg379-390, May 2000

[CG+00] K. Chakrabarti, M. Garofalakis et al, “Approximate
query processing using wavelets,” Proc. Of the
2000 Intl Conf. On Very Large Data Bases, Pg
111-122, 2000

[CJ+03] C. Cranor, T. Johnson et al., “Gigascope: A steram
database for network applications,” Proc. Of 2003
ACM SIGMOD Intl. Conf. On Management of
Data, pg647-651, June 2003

[CP87] R. Cavallo and M. Pittarelli , “The theory of
probabili stic databases,” Proc. Of the Conf. On
VerLarge Data Bases, 1987

[DRS01] A. Dekhtyar, R. Ross and V. Subrahmanian.
“Probabili stic Temporal Databases, I: Algebra,”
ACM Trans. On Database Systems, Vol.26, No.1,
pg 41-95, March 2001

[DS96] D. Dey and S. Sarkar, “A probabili stic relational
model and algebra,” TODS, 21(3):339-369, 1996

[EMS02] D. Estrin, M. Srivastava and A. Sayeed, Mobicom
2002 Tutorial T5 on Wireless Sensor Networks,
Mobilcom, 2002

[FGB02] A. Faradjian, J. Gehrke and P. Bonnet, “GADT: A
Probabilit y Space ADT for Representing and
Querying the Physical World” ICDE, 2002.

[GM95] A. Gupta and I.S. Mumick. Maintenance of
materialized views: Problems, techniques, and
applications. IEE Computer Society Bulletin of the
Technical Comm. On Data Eng., 18(2):3-18, June
1995

[H87] E. Hanson, “A Performance Analysis of View
Materialization Strategies,” SIGMOD Conference
1987: 440-453

[IL84] T. Imielinski and W. Lipski, “ Incomplete
information in relational databases,” Journal of the
ACM, 31(4):761-791, Oct. 1984

[JK+98] H. Jagadish, N. Koudas et al, “Optimal histograms
with qualit y guarantees,” Proc. Of the 1998 Intl
Conf. On Very Large Data Bases, Pg 275-286,
1998

[JMS95] H. V. Jagadish, I. S. Mumick and A.Silberschatz,
“View maintenance issues for the chronicle data
model. Proc. Of the 14th ACM
SIGACT-SIGMOD-SIGART symp. On Principles
of Database Systems, pg 113-124, May 1995

[K60] R. Kalman, “A new approach to linear filtering
and prediction problems,” Tran of the
ASME-Journal of Basic Engineering, 82(Series
D):35-45

[KF88] G. Kli r and T. Folger, “Fuzzy sets, uncertainty and
information, Prentice Hall , New Jersey, 1988

[KL51] .S. Kullback, R. A. Liebler, “On Information and
Suff iciency,” Annals of Mathematical Statistics, 22,
76-86, 1951.

[LL+97] L. Lakshmanan, N. Leone et al, “ProbView: A
flexible probabili stic database system,” TODS,
22(3):419-469, 1997

[M79] P. Maybeck, “Stochastic models, estimation, and
control,” Vol 1, Academic Press, 1979

[M95] A. Mill s, “Heat and mass transfer,” Burr Ridge,
1995

[PD99] N. Paton and O. Diaz, “Active Database systems,”
ACM Computing Surveys, 31(1):63-103, March
1999

[R95] Y. Rozanov, “Probabilit y theory, random processes,
and mathematical statistics,” Kluwer Academic
Publishers, 1995

[S96] M. Sulli van, “A stream database manager for
network traff ic analysis,” Proc. Of the 22nd Intl.
Conf. On Very Large Data Bases, pg594, Sept.
1996

[SR88] J. Srivastava and D. Rotem, “ Analytical Modeling
of Materialized View Maintenance,” PODS 1988:
126-134

[TG+92] D. Terry, D.Goldberg and et al., “continuous
queries over append-only databases,” Proc. Pf the
1992 ACM SIGMOD Intl. Conf. On Management
of Data, pg321-330, June 1992

[W82] Eugene Wong, “A statistical approach to
incomplete information in database systems,”
TODS, 7(3):470-488, 1982

[W94] C. Wright, “Applied Measurement Engineering:
How to Design Effective Mechanical Measurement
Systems,” Prentice Hall , 1994

Appendix

A.1. Definitions of CONST and IGNORANT Prediction Strategies
CONST Prediction Strategy: �� �� (history, t)

return history@.t0
where
 history@.t0 denotes attribute value at time t0 (t0 <t)

IGNORANT Prediction Strategy: �� �� (history, t)

If there exists history@.t
then return history@.t

 else return history@.t
- with infinite uncertainty

where
 t

- denotes the time instant most recent to t and available in history

A.2. Sample Composition Strategies
Table 1 shows composition strategies for Gaussian p.d.f’s. Table 1 is derived from common practice in measurement
engineering [W94]. Tables 2 shows composition strategies for Boolean random variables. Table 2 is derived from [LL+97]
by adding conservative or aggressive constraints to maintain first order representations of probabili stic Boolean values.

Table 1: Composition Strategies for Gaussian p.d.f under algebraic operations
 + - * /

Conservative (� 1, � 1) + (� 2, � 2) =

(� 1+ � 2, � 1+ � 2)

(� 1, � 1) - (� 2, � 2) =

(� 1 - � 2, � 1+ � 2)

(� 1, � 1) * (� 2, � 2) =

(� 1* � 2, | � 2* � 1|+ |� 1* � 2|)

(� 1, � 1) / (� 2, � 2) =

(� 1/ � 2, |� 1/ � 2| + |� 2/ � 1|)

Ignorance

Aggressive (� 1, � 1) + (� 2, � 2) =

(� 1+ � 2, | � 1- � 2|)

(� 1, � 1) - (� 2, � 2) =

(� 1 - � 2, | � 1- � 2|)

(� 1, � 1) * (� 2, � 2) =

(� 1* � 2, || � 2* � 1|-|� 1* � 2||)

(� 1, � 1) / (� 2, � 2) =

(� 1/ � 2, ||� 1/ � 2| - |� 2/ � 1||)

Conservative (� 1, � 1) + (� 2, � 2) =

(� 1+ � 2, � 1+ � 2)

(� 1, � 1) - (� 2, � 2) =

(� 1 - � 2, max(� 1, � 2)

(� 1, � 1) * (� 2, � 2) =

(� 1* � 2, | � 2* � 1+ � 1* � 2|)

(� 1, � 1) / (� 2, � 2) =

(� 1/ � 2, |� 1/ � 2 + � 2/ � 1|)

Positi ve

Correlation

Aggressive (� 1, � 1) + (� 2, � 2) =

(� 1+ � 2, min(� 1, � 2))

(� 1, � 1) - (� 2, � 2) =

(� 1- � 2, | � 1- � 2|)

(� 1, � 1) * (� 2, � 2) =

(� 1* � 2, min(|� 2* � 1|, |� 1* � 2|))

(� 1, � 1) / (� 2, � 2) =

(� 1/ � 2, min(|� 1/ � 2|,|� 2/ � 1|))

Conservative (� 1, � 1) + (� 2, � 2) =

(� 1+ � 2 ,max(� 1, � 2))

(� 1, � 1) - (� 2, � 2) =

(� 1- � 2, � 1+ � 2)

(� 1, � 1) * (� 2, � 2) =

(� 1* � 2, max(|� 2* � 1|, |� 1* � 2|))

(� 1, � 1) / (� 2, � 2) =

(� 1/ � 2, max(|� 1/ � 2|,|� 2/ � 1|))

Negative

Correlation

Aggressive (� 1, � 1) + (� 2, � 2) =

(� 1+ � 2, | � 1- � 2|)

(� 1, � 1) - (� 2, � 2) =

(� 1- � 2, min(� 1, � 2))

(� 1, � 1) * (� 2, � 2) =

(� 1* � 2, | � 2* � 1- � 1* � 2|)

(� 1, � 1) / (� 2, � 2) =

(� 1/ � 2, |� 1/ � 2 - � 2/ � 1|)

Conservative Independence

Aggressive

(� 1, � 1) + (� 2, � 2) =

(� 1+ � 2, sqrt(� 1
2+ � 2

2))

(� 1, � 1) - (� 2, � 2) =

(� 1- � 2, sqrt(� 1
2+ � 2

2))

(� 1, � 1) * (� 2, � 2) =

(� 1* � 2, sqrt((� 2* � 1)2+ (� 1* � 2)2))

(� 1, � 1) / (� 2, � 2) =

(� 1/ � 2, sqrt((� 1/ � 2)2 +

(� 1* � 2/ � 2
2)2))

Table 2: Composition Strategies for Boolean variable under logic operations1
 Conjunction (∧) Disjunction (∨)

Conservative(lower) max(0, p1+ p2 -1) max(p1, p2) Ignorance

 Aggressive min(p1, p2) min(1, p1+p2)

Conservative Positi ve

Correlation Aggressive

min(p1, p2)

max(p1, p2)

Conservative Negative

Correlation Aggressive

max(0, p1+ p2-1)

min(1, p1+p2)

Conservative Independence

Aggressive

p1* p2 p1+ p2 – (p1* p2)

A.3. Predicate-based Schedule Specification (PSS)

1 NOT is an unary operator, thus not included in this table

A predicate-based schedule specification, PSS, for Schedule S is a mapping of {{ pt1, … ,ptn} ,{ st1, … ,stm }} �to, where
1. n and m are finite integers
2. ptk (1

�
k

�
n) is a deterministic predicate. (i.e. it evaluates to either TRUE or FALSE)

3. stk (1
�

k
�

n) is an internal state needed for predicate evaluation
4. to is the next time point in S whenever PSS is invoked

Schedules used in sensor network applications fall into three categories: absolute, relative and value-based. Absolute
schedule is specified directly through a series of timestamps. For example, monitor temperature readings every 5 minutes
from 00:00:00. Relative schedule is specified as time differences to other schedules. For example, whenever a temperature
reading is received. Value-based schedule is determined by evaluation of the predicates over certain attribute values. For
example, report temperature when it is greater than 50 degrees. A general schedule can be a combination of these three
types. Thus computing next time point requires continuous evaluation of the predicates for these three types of schedules.

A.4. Illustrative Examples for PS-relations and resampling
Example 1: Consider a PS-schema ST=(SensorId, ObjMonitored, SensorLoc, Temperature) for temperature sensors, where
SensorId, ObjMonitored, SensorLoc are dimension attributes representing sensor id, object to be monitored, and location
of the sensor, while Temperature is a measurement attribute. The following is an example PS-relation T over the
PS-schema ST under a schedule S=(1, 2, 3, 5).
SensorId ObjMonitored SensorLoc Temperature Timestamp
S1 O0001 (20, 50) N(50, 0) 1
S1 O0001 (20, 50) N(51, 1) 2
S1 O0001 (20, 50) N(52, 1) 3
S1 O0001 (20, 50) N(55, 0) 5
S2 O0001 (30, 60) N(51, 1) 1
S2 O0001 (30, 60) N(51, 0) 2
S2 O0001 (30, 60) N(51, 1) 3
S2 O0001 (30, 60) N(52, 0) 5
There are two object PS-tuple sets in T, identified by dimension attribute values (‘S1’ , ‘O0001’ , ‘(20, 50)’) , and (‘S2’ ,
‘O0001’ , ‘(30, 60)’) respectively. The four grey tuples belong to object PS-tuple set (‘S1’ , ‘O0001’ , ‘(20, 50)’) . The rest
four tuples belong to object PS-tuple set (‘S2’ , ‘O0001’ , ‘(30, 60)’) . They record the temperature readings measured by
the two sensors in accordance with schedule S.

Example 2: Consider the input PS-relation as given in Example 1. Assume that S is { 1,2,3,4,5} , the P-strategies for
Temperature is:

)(5.0
11

10.1)()(),()(−−⋅
−− ⋅+== kk tt

kkkk etttt σσµµ � S(R) yields:
SensorId ObjMonitored SensorLoc Temperature TS

S1 O0001 (20, 50) N(50, 0) 1

S1 O0001 (20, 50) N(51, 1) 2

S1 O0001 (20, 50) N(52, 1) 3

S1 O0001 (20, 50) N(52, 1+ e) 4

S1 O0001 (20, 50) N(55, 0) 5

S2 O0001 (30, 60) N(51, 1) 1

S2 O0001 (30, 60) N(51, 0) 2

S2 O0001 (30, 60) N(51, 1) 3

S2 O0001 (30, 60) N(51, 1+ e) 4

S2 O0001 (30, 60) N(52, 0) 5

Note that in addition to prediction, P-strategies can be used to model sliding windows. For example, one can specify a
P-strategy, which only returns data with timestamp in the most recent one hour (return NULL for all other timestamps), to
simulate a sliding time window as commonly used in other data stream models.

A.5. Illustrative Examples for PSRA Operators

Example 3 Consider two PS-relations T1 and T2 over the same PS-schema ST=(ObjMonitored, Temperature), where
ObjMonitored is a dimension attribute and Temperature is a measurement attribute. In addition, the P-strategies of
Temperature in T1 and T2 are given by
P-strategy for T1:

)(5.0
11

10.1)()(),()(−−⋅
−− ⋅+== kk tt

kkkk etttt σσµµ
P-strategy for T2:

)(5.0
11

15.0)()(),()(−−⋅
−− ⋅+== kk tt

kkkk etttt σσµµ
where µ(tk-1) and σ(tk-1) are the mean and standard deviation of the Gaussian p.d.f. at time tk-1.
T1 (with schedule (1, 3, 5))
ObjMonitored Temperature Timestamp
O0001 N(50, 0) 1
O0001 N(52, 1) 3
O0001 N(55, 0) 5
O0002 N(51, 1) 1
O0002 N(51, 1) 3
O0002 N(52, 0) 5

T2 (with schedule (1, 2, 5))
ObjMonitored Temperature Timestamp
O0001 N(50, 0) 1
O0001 N(52, 1) 2
O0001 N(54, 0) 5

Let the CL-strategy C=Average using conservative ignorance2 and the schedule S=(1, 2, 3, 4, 5). The result PS-relation
T1∪(C,S)T2 is given in the following table:
ObjMonitored Temperature Timestamp
O0001 N(50, 0) 1
O0001 N(52, 1) 2
O0001 N(52, 1) 3
O0001 N(52, 1+ e75.0) 4
O0001 N(54.5, 0) 5
O0002 N(51, 1) 1
O0002 N(51, 1+ e75.0) 2
O0002 N(51, 1) 3
O0002 N(51, 1+ e75.0) 4
O0002 N(52, 0) 5

And the new P-strategy on Temperature becomes

)(5.0
11

175.0)()(),()(−−⋅
−− ⋅+== kk tt

kkkk etttt σσµµ

Example 4. Consider the same PS-relations T1 and T2 as described in Example 3. Assume the p.d.f. equivalence threshold
ε is set to be 0. The PS-relation output by T1∩C,ST2, where C=Average and the schedule S=(1, 2, 3, 4, 5), is the following:
ObjMonitored Temperature Timestamp
O0001 N(50, 0) 1
O0001 NULL 2
O0001 NULL 3
O0001 NULL 4
O0001 NULL 5

Example 5. Consider the same PS-relations T1 and T2 as described in Example 3. Assume the p.d.f. equivalence threshold
ε is set to be 0. The PS-relation output by T1−C,ST2, where C=Average and the schedule S=(1, 2, 3, 4, 5), is the following:
ObjMonitored Temperature Timestamp

2 That is, C((�
1, � 1), (

�
2, � 2))=

2

2
,

2

2 11 σσµµ ++
.

O0001 NULL 1
O0001 NULL 2
O0001 N(52, 1) 3
O0001 N(52, 1+ e) 4
O0001 N(55, 0) 5
O0002 N(51, 1) 1
O0002 N(51, 1+ e) 2
O0002 N(51, 1) 3
O0002 N(51, 1+ e) 4
O0002 N(52, 0) 5

Example 6. Consider the same PS-relations T1 described in Example 3. The following shows the PS-relation output by
σ(Temperature<54, S)T1, where S=(1, 2, 3, 4, 5) and the threshold assigning to minimum TRUE probabilit y of the predicate
Temperature<54 is 80%.

ObjMonitored Temperature Timestamp
O0001 N(50, 0) 1
O0001 N(50, e) 2
O0001 N(52, 1) 3
O0001 NULL 4
O0001 NULL 5
O0002 N(51, 1) 1
O0002 N(51, 1+ e) 2
O0002 N(51, 1) 3
O0002 N(51, 1+ e) 4
O0002 N(52, 0) 5

Example 7. Consider the PS-relation T shown in Example 1. Assume that the P-strategy of Temperature is given by

)(5.0
11

10.1)()(),()(−−⋅
−− ⋅+== kk tt

kkkk etttt σσµµ . Note that in every time point in T, there are two PS-tuples with same
value in ObjMonitored. Thus, the project of ObjMonitored and Temperature from T requires cleaning. Let the CL-strategy
C=Average using conservative ignorance and the schedule S=(1, 2, 3, 4, 5). The PS-relation output by π C, S, (ObjMonitored,

Temperature)T is the following:

ObjMonitored Temperature Timestamp
O0001 N(50.5, 0.5) 1
O0001 N(51, 0.5) 2
O0001 N(51.5,1) 3
O0001 N(51.5, e+1) 4
O0001 N(53.5, 0) 5

Example 8. Consider the PS-relation T shown in Example 1 and another PS-relation P shown below:

SensorId ObjMonitored Pressure Timestamp
P1 O0001 N(100, 0) 1
P1 O0001 N(104, 1) 2
P1 O0001 N(107, 1) 4
P1 O0001 N(110, 0) 5

Assume that the P-strategies for Temperature in T and Pressure in P are the following:
P-strategy for T:)(5.0

11
10.1)()(),()(−−⋅

−− ⋅+== kk tt
kkkk etttt σσµµ

P-strategy for P:)(5.0
11

15.0)()(),()(−−⋅
−− ⋅+== kk tt

kkkk etttt σσµµ

The PS-relation of T×SP, where S=(1, 2, 3, 4, 5) is the following:

T.SensorId T.ObjMonitored T.SensorLoc P.SensorId P.ObjMonitored Temperature Pressure Timestamp
S1 O0001 (20, 50) P1 O0001 N(50, 0) N(100, 0) 1
S1 O0001 (20, 50) P1 O0001 N(51, 1) N(104, 1) 2
S1 O0001 (20, 50) P1 O0001 N(52, 1) N(104,

2
1

e+)
3

S1 O0001 (20, 50) P1 O0001 N(52,
1+ e)

N(107, 1) 4

S1 O0001 (20, 50) P1 O0001 N(55, 0) N(110, 0) 5
S2 O0001 (30, 60) P1 O0001 N(51, 1) N(100, 0) 1
S2 O0001 (30, 60) P1 O0001 N(51, 0) N(104, 1) 2
S2 O0001 (30, 60) P1 O0001 N(51, 1) N(104,

2
1

e+)
3

S2 O0001 (30, 60) P1 O0001 N(51,
1+ e)

N(107, 1) 4

S2 O0001 (30, 60) P1 O0001 N(52, 0) N(110, 0) 5

Example 9. Assume that schedule S is { 1, 2} , Group condition is SensorId, F for temperature reading is AVG, R is given
as follows after resampling, and independent composition strategy is adopted for example
SensorId Temperature reading Timestamp
Sensor01 N(50, 4) 1
Sensor01 N(40, 2) 2
Sensor02 N(60, 10) 1
Sensor02 N(50, 8) 2

a). When hc allows the entire history to participlate aggragation (i.e. hc = TRUE), RSGF),,(ℑ yields

SensorId Temperature reading Timestamp
Sensor01 N(50, 4) 1
Sensor01 N(45, 2.24) 2
Sensor02 N(60, 10) 1
Sensor02 N(55, 6.4) 2

b). When hc imposes a window constraint of length 1 by checking (current time – t < 1),

RSGF),,(ℑ yields

SensorId Temperature reading Timestamp
Sensor01 N(50, 4) 1
Sensor01 N(40, 2) 2
Sensor02 N(60, 10) 1
Sensor02 N(50, 8) 2

A.6. Lemmas for PSRA properties

Lemma 1: Traditional relational algebra (TRA) is a special case of PSRA
Proof: The deterministic and non-stream data types generall y used in TRA can be modeled by DD domain in PSRA
framework. All attributes in TRA thus can be modeled as dimension attributes in PSRA. The CONST prediction strategy
makes sure that only one tuple is needed for each dimension value for the whole history. Thus a PS-relation represents a
traditional relation with the only extra information of the timestamp attribute. Now consider the stream operators when all
attributes are dimensional. In this case the Cleaning and resampling operators always preserve the original relation since
no data redundancy in original relation and all attributes have CONST P-strategy. Consequently:

stream union, stream intersection and stream difference are reduced to corresponding set operations
stream select becomes predicate evaluation on each dimension value, thus on each tuple in PS-relation
stream project becomes simple dimension attributes projection and resulting PS-relation also has only dimension

attributes, thus a valid model of traditional relation

stream Cartesian product becomes pairing up every possible combination of dimension attribute values from input
relations.

stream join has the same compositional definition as in traditional relational model. If stream select and stream
Cartesian product are same as in TRA, stream join must be the same as the join operator in TRA.

stream aggregation becomes application of aggregation functions on dimensional values based on grouping
conditions, regardless of the schedule. Result PS-relations are also all dimensional.
Therefore TRA is a special case of PSRA where all attributes are modeled as dimension attributes.

Lemma 2: CQL can be modeled in PSRA
Proof: All deterministic models process information purely upon the timely availabilit y of data. Deterministic models
implicitl y employ a black-white data uncertainty strategy: if a measurement has been received when it is needed, the is
zero, otherwise, data uncertainty is infinite. Thus deterministic data streams can be generall y modeled by PS-relations with
IGNORANT prediction-strategy for all measurement attributes.

CQL [ABW03] can be considered a TRA extended with three window type operations (time-based, tuple-based and
partitioned). Streams are first converted to relations using these window operations. TRA operators are then applied on the
relation pool. Finall y results of continuous queries are converted back to streams from relations. The window-based
operations are modeled by the IGNORANT P-strategy with constraints on the data available in the input parameter history.
For example, a simple 30 minutes sliding window in CQL can be modeled as a IGNORANT P-strategy where only the
most recent 30 minutes data (i.e. data whose timestamps > (current time - 30 min) are passed to the IGNORANT
P-strategy as the parameter history. Thus in PSRA, window specification can be modeled as input data constraints to
P-strategies or having this check up implemented inside the IGNORANT P-strategy. Since PSRA support arbitrary
P-Strategy, CQL window specification can be modeled in PSRA. Lemma 1 has shown that all TRA operators can be
modeled in PSRA when dealing with pure non-stream relations. We conclude that CQL can be modeled in PSRA.

Lemma 3: Aurora Data steam model [AC+03] can be modeled in PSRA
Aurora [AC+03] employs procedural stream-to-stream data model with the seven operators: Filter, Map, Union, Bsort,
Aggregate, Join, Resample. We only discuss the its data modeling power without touch on resource management related
actions. In the following discussion, P-strategies are always assumed to be IGNORANT unless explicitl y stated.

Filter takes one input stream and generate (m+1) output streams, where m is the number of predicates to be
evaluated. Filter can be modeled as m stream select operations with output schedule same as input schedule.

Map can be modeled by stream aggregation where attributes in the grouping condition include all dimension
attributes and the timestamp.

Union can be readily modeled by the stream union.
BSort can be modeled by the resampling in PSRA with a P-strategy always returning minimal value in its

computation buffer.
Aggregate can be modeled by the stream aggregation with the window identifying attributes set as dimension

attributes.
Join in Aurora is essentiall y a window-based join and can be modeled as stream join with IGNORANT

window-constrained P-strategy as discussed in the CQL part.
Resample can be readily modeled by the resampling operator in PSRA with P-strategy corresponding to F and

schedule corresponding to the heartbeats. Though syntacticall y and functionall y the Aurora resample is very similar to the
PSRA resampling, we draw the distinction that no uncertainties introduced by estimations are considered in Aurora
resample.
We thus conclude that data stream model in Aurora can be modeled in PSRA.

